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Using a multi-spin coding algorithm, the Hopfield model is studied for network 
sizes up to N =  33,968. Thermodynamically stable states are found in a region 
where the replica-symmetric solution predicts none should exist, but where a 
one-step replica symmetry-breaking calculation predicts some should exist. 
Furthermore, the order parameter in this region is found to take on two distinct 
values, one of which is not predicted by any theory. 
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1. I N T R O D U C T I O N  

The Hopfield model (8) is an example of a physical system having random 
interconnections, the study of which is currently one of the most active sub- 
fields in physics research. This is partly due to the fact that knowledge 
gained in this area has applications not only to the widely studied case of 
spin glasses (see ref. 1 for a review), but also in areas outside the traditional 
sphere of physics, such as error-correcting codes, (3} evolution, (4) and, as 
exemplified by the Hopfield model, neural networks. {2) In studying such 
systems a very powerful calculational tool known as the "replica method" 
has emerged (see ref. 1 and references therein). This tool allows one to 
calculate the free energy averaged over a quenched distribution of random 
connections as the saddle-point of multidimensional integrals over so-called 
"replica variables." Normally this saddle point cannot be determined in 
general; instead, one makes a replica-symmetric approximation, (5) i.e., one 
assumes the replica variables are independent of the replica index and 
attempts to find the solution in that case. When this approximation is 
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stable, the replica-symmetric solution is in excellent agreement with Monte 
Carlo simulations. (7) However, as is the case for the Hopfield model, the 
replica-symmetric solution may not be stable and one must look for 
solutions which break replica symmetry, tm'7'9) 

Normally, replica symmetry breaking is not directly observable; 
however, for the Hopfield model, Crisanti et aL (9) have shown that accoun- 
ting for replica symmetry breaking leads to a new phase whose thermo- 
dynamic equilibrium is incompatible with the replica-symmetric solution. 
In fact, they searched for the existence of such a phase using standard 
Monte Carlo techniques. (2'9) Unfortunately, standard Monte Carlo techni- 
ques allow only systems of modest size to be simulated, which, due to the 
small size of the new phase, are insufficient to probe its properties. Indeed, 
the simulation results of refs. 2 and 10 were ambiguous as to the very 
existence of the proposed phase. In this paper a "multispin coding" version 
of the Hopfield model is used which allows very large system sizes and thus 
the possibility of probing for the existence of the predicted phase. 

The next section describes the problem in more detail, including a 
brief discussion of the replica solution. Following that is a description of 
the numerical algorithm and the multispin coding procedure. Finally the 
results are presented and discussed. 

2. M O D E L  

The Hopfield model (s) is a simplification of how processes like 
associative memory occur in higher-order cognitive systems such as the 
human brain. The model consist of N two-valued neurons Si = { _+ 1 } con- 
nected by long-range interactions J•, which in turn are determined by the 
states to be "remembered." These interactions can, in their simplest 
approximation, be written as 

P 

So=~ Z ~ ;  (2.1) 
p . = l  

where ~" represent the states to be remembered, or the "stored states," and 
P is the total number of these states. From these symmetric couplings the 
usual definition of energy can be employed: E = - Z i r  By 
defining temperature T =  1//~ as a measure of the noise in the system, (2) i.e., 
the occasional spontaneous flipping of the neurons, one can consider the 
statistical mechanics of the model, so that associative memory is construed 
to occur when the system comes to thermodynamic equilibrium after 
having been initialized to a given state. If the equilibrium state is "close" to 
a stored state, then it is said that the stored state has been "remembered." 
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Apart from this unique choice of couplings, the model behaves in many 
respects similar to a spin glass, e.g., at low temperatures the system 
explores only a region of phase space severely limited by its initial state. 

The statistical mechanics of the model has been solved in some detail 
by Amit et al. (2~ In doing so, they were not interested in the behavior of the 
system for any particular set of patterns, but in the behavior for an 
"average" set of stored patterns; hence, the free energy must be averaged 
over the stored patterns. This is done by the replica method: 

f = lim - 1 
N--+ co " ~  ((In Z)> 

- 1  
= lira lim ~ (((Zn>> - 1) (2.2) 

n ~ 0  N ~ c o  ,0/'HV 

where Z is the usual partition function and the double brackets indicate an 
average over all the stored states. For a complete discussion of this solu- 
tion, the reader is referred to the original paper of Amit et al. Here it sub 
ficies to say that for the case of replica symmetry, they showed that there 
indeed existed solutions of the saddle-point equations having large remem- 
brance, i.e., a value of m" _-_=- (l/N) ~ j  ~ S j  close to one, provided ~ < 0.1378 
(c~- P/N)  and TR < T <  TM. For low temperatures, T <  TR, this replica- 
symmetric solution was shown to be unstable; however, when e is near 
0.1378, the value of T~ for which the solution becomes unstable is on the 
order of 0.01. On present-day computers, it would be difficult to distinguish 
such temperatures from T = 0 ;  hence, for practical purposes the replica- 
symmetric solution can be considered stable for these values of c~. 

For the case of replica symmetry breaking, Crisantietal.  (9) have 
shown, using a generalization of Parisi's method, that there exists at T =  0 
a region 0.1378 ~< c~ ~< 0.144 in which there are thermodynamic equilibrium 
states having large remembrance. If the existence of such a region, along 
with its properties, were confirmed by Monte Carlo simulations, it would 
constitute a direct test showing that replica symmetry breaking has physi- 
cal consequences. Previous simulations were restricted in the size of the 
networks which could be probed and, as mentioned above, could not 
unambiguously confirm these predictions. It was with the hope of directly 
seeing these effects that the following simulations were carried out. 

3. N U M E R I C A L  M E T H O D  

The numerical method used for this research was first published by 
Penna and Oliveira. (1~ In the form discussed here, the program is O(N) 
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times faster than their version. The storage requirements of this algorithl 
grow like O(c~N 2) bits; hence, as will be discussed below, cpu time is th 
chief limiting factor in implementing this program. 

For a zero-temperature Monte Carlo simulation, the updating rule 
each time step is simply 

S~(t + 1) = sgn(hg(t)) (3.1 

where hi(t) is the local field at time t. In the Hopfield model, the local fiek 
can be written as 

hi(t) = so s A o  

1 P 

= N Z 
J ~  u 

P 
=- ~ m~(t) ~ - ~ S ~ ( t )  

# 

1 P 
= ~ tL(t) - ~ S,(t) (3.2) 

where m"(t)=-(1/N)~.j~Sj(t)and H~(t)-=~j.~ ~ S s ( t ) .  Obviously, for 
numerical simulations one need store only the ~ and not the complete 
coupling matrix Y~. Since ~ and S~ are two state variables only, it is more 
efficient to store them as single bits rather than whole words, i.e., one 
should use the so-called "multispin coding" approach. (~~ On a computer 
with B bits per word, all the stable patterns can be stored in aN2/B integer 
words. Compared to algorithms which store one spin in one word, this 
multispin coding scheme improves by a factor B the total size of the 
systems which can be simulated. 

It is also evident that the m ~ need not be recalculated in full at every 
site of the lattice. Instead they can be calculated at the time the network 
is initialized to a given state and then updated only when in asynchronous 
updating a spin is flipped, or in parallel updating after each parallel update. 
This saves a factor O(N) in cpu time compared to the approach used in 
ref. 10 of recalculating these quantities at each lattice site. Within the multi- 
spin coding framework, the mU(t) are calculated by 

N/B 

Um~(t)= U - 2  ~ POPCNT(~| 
j = l  

where ~ is an integer word containing B spins from the state ~ ,  ai(t ) is 
an integer word containing B spins from the state S(t), | stands for the 
"exclusive-or" logical operator, and POPCNT is a function which counts 
the number of bits set to one in the argument. 
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In calculating the Hi(t),  one sums over the/~ in Eq. (3.2) by multiply- 
ing Nm ~ by + 1 ( - 1 )  if the bit representing ~ is 1 (0). The final step is 
carried out by using integer division, Si( t+ 1)=  [ H i ( t ) +  NP]/ (PN+ P) if 
the bit representing Si( t )= 1, or Si(t + 1)=  [ H i ( t ) +  N P ] / ( P N -  P) if the 
bit representing Si(t)=0.  

The cpu bottleneck is in calculating the local fields hi(t), and in actual 
running, the program is about as fast, for small networks, as an equiva- 
lently coded version of a program which does not use multispin coding. 
For large networks there is a clear advantage in not using too large a 
fraction of the computer's main memory. For  example, on the HLRZ's 
Cray-YMP/832, one can simulate system sizes up to P N =  c~N 2 ~ 2.0 x 107 
using the standard, single-spin per word approach. On the other hand, a 
muItispin coding version of the program with the same values of c~ and N 
requires less than 350,000 words. Although the Cray-YMP/832 has handled 
networks up to c~N2~ 1.41x 10 9 in test runs of the present multispin 
coding program, cpu time limitations make it impractical to use systems 
much larger than c~N 2 ~ 2 x 108 for actual studies. In calculating the local 
fields hi(t), the algorithm described above achieved speeds of 580 condi- 
tional adds per microsecond while running in asynchronous updating 
mode. 

Effects attributable to replica symmetry breaking were tested for by 
first choosing at random P = c~N patterns to be stored, then initializing the 
system to one of the stored patterns and applying the above 
zero-temperature Monte Carlo algorithm to each neuron in sequence until 
a stable state or cycle of length 2 was reached. When such a state was 
reached, the final overlap with the initial state was recorded. At N =  1088, 
a total of 100 initial starting states, in each of 400 sets of patterns, for a 
total of 40,000 initial states were used in order to determine the distribu- 
tion of the final overlap, while at N = 33,968, averages over only 20 initial 
starts in each of 20 sets of patterns, for a total of 400 initial states, could 
be simulated within a reasonable time. (These statistics should be com- 
pared to refs. 2 and 9, where at their largest system size of N =  3000, only 
200 initial states were used.) These simulations were carried out for values 
of c~ in the range {0.110, 0.148}, with most of the data being taken in the 
region of 0.142 < c~ < 0.146, where the results of replica symmetry breaking 
should have been the strongest. 

4. RESULTS A N D  D ISCUSSION 

The first quantity measured was the distribution of the final overlaps 
m I, given that the initial starting state was one of the stored patterns. 
Figure 1 shows two typical histograms of m i for c~ = 0.142 and e = 0.144 
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Fig. 1. Histograms for relative occurrence of the final overlap at e = 0.142 and e = 0.144. The 
solid line is at N =  1088, and the dashed line is at N =  33,968 for e =0.142 and N =  32,000 for 

= 0.144. 

each at two values of N. It is obvious from both of these plots that the 
order parameter in/  has a two-state structure characteristic of first-order 
phase transitions. This would seem to be in agreement with the theoretical 
predictions of Amit et al. In order to determine to which phase these 
particular values of c~ belong, one must examine the finite-size behavior 
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of She total area under one of the peaks to determine how fast that area is 
growing or shrinking. 

Figure 2 shows such a plot for the area under the large m F peak, A, 
at ~ =0.136, 0.140, 0.142, 0.144, and 0.146. From this plot it is clearly seen 
that the area under the large-m peak in the histogram is continually 
decreasing for c~ ~>0.144; hence, these values of e lie in the phase of low 
recallability. For  e<0 .136  the area appears to be increasing up to the 
maximum A = 1, indicating a phase of high remembrance. But for c~ = 0.140 
and c~ = 0.142, A decreases slightly as N increases before reaching a nonzero 
plateau, which, within the error bars, is neither decreasing nor increasing 
as N becomes large, i.e., the two-state structure for m is apparently stable. 
These values of ~ correspond to the region in which there are no 
replica-symmetric, thermodynamically stable states and can be interpreted 
as a confirmation of replica symmetry breaking. Figure 3 shows the values 
of A extrapolated to N = o e .  At ~ 0 . 1 3 8 ,  where the replica-symmetric 
approximation predicts a first-order phase transition, A first shows devia- 
tions from A = l .  At c~ = 0.143 _+ 0.001 the system undergoes a phase 
transition, which could be either first or second order. From Figs. 1 and 2 
it is evident that the large-N behavior becomes manifest only for network 
sizes considerably larger than those previously simulated. Simulations up 
to N = 3000 as in refs. 2 and 9 do not give a clear indication about the limit 
N--* ~ and, as a consequence, failed to see the narrow region in which the 
extrapolated value of A is neither zero nor unity. 

Figure 4 shows the extrapolated position of the center of both the 
large-m and the small-m peaks as a function of ~. For  comparison, the 
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Fig. 4. 
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Plot of mf versus ~. The solid line is the replica-symmetric prediction and the dashed 
line is the one-step replica-symmetry-breaking prediction of ref. 9. 

predictions of the replica-symmetric approximation are shown along with 
the one-step replica-symmetry-breaking calculation of Crisanti et  a/. (9) In 
the region in which replica symmetry is broken there exist two stable 
values for the order parameter m. From Fig. 3 this is interpreted as mean- 
ing that in the neighborhood of a finite fraction of the stored states, there 
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Fig. 5. Posit ion of the dmall-m peak versus 1/x/-N. The open squares are at ~ = 0.144 and the 
closed circles at c~ =0.142. The lower data show the value of the remanent overlap starting 
from an arbitrary initial state. 
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are energy minima having large overlap with the stored state, while for 
other stored states the nearest energy minima have small overlaps. Below 
e~0.138 almost all stored states have high overlap with an energy mini- 
mum, while above e ~ 0.144 almost all stored states have only a small over- 
lap with the nearest energy minima. 

These energy minima having small overlap do not simply correspond 
to the remanent overlap seen in spin glasses. (1~) Figure 5 shows the position 
of the center of the small-rn peak as a function of 1/x//N, and the average 
overlap of the final state with the initial state when the initial state is 
chosen at random. The extrapolation to N - - ~  clearly yields different 
values. Note that the remanent overlap when starting from an arbitrary 
state is much smaller than that for the case of a spin glass. Hence, the 
system does distinguish between the stored states and an arbitrary state 
even in the overloading phase. 

It is also of interest to note that simulation results for rn s fall between 
the values predicted by replica-symmetric calculations and one-step replica 
symmetry breaking. From this it can be concluded that the limit of 
many-step replica symmetry breaking is not approached monotonically in 
this model. If such behavior were true in general, it would provide quite a 
powerful method for placing bounds on physically meaningful quantities. 

One outstanding puzzle is why the theoretical calculations fail to see 
the states having small-rn overlap with the stored states? Both replica- 
symmetric and one-step replica symmetry breaking predict a transition 
to rn = 0, although such a transition is ruled out by the present simulations. 

In summary, the numerical simulations presented here confirm the 
existence of a new phase in the Hopfield model which is predicted only in 
a replica-symmetry-breaking approximation. The new phase is charac- 
terized by a two-state order parameter, although the lower value of rnf is 
not predicted by theoretical calculations. Furthermore, the numerical algo- 
rithm shows that multispin coding can give significant advantages even 
when it is not faster than a normally coded program. 

NOTE A D D E D  IN PROOF 

The qualitative features of the phase diagram in fig. 4 were anticipated 
in early work by W. Kinzel in Lecture Notes in Physics, Number 275, 
J. L. van Hemmen and I. Morgenstern, eds. (Springer-Verlag, Berlin 1986). 
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